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1 Introduction

With the ever-increasing genomic information pouring into the databases researchers start to look for pattern
in genomes. Key questions are the identification of function. In the past function was mainly understood to
be assigned to a single gene isolated from other cellular components or mechanisms. Sequence comparison
of single genes and their products (proteins) as well as of intergenic space are a consequence of a well
established one-gene one-function interpretation. Prediction of function solely by sequence similarity searches
are powerful techniques that initiated the advent of bioinformatics and computational biology. Seminal work
on sequence alignment by Temple Smith and Michael Waterman [33] and sequence searches with the BLAST
algorithm by Altschul et al.[2] provide essential methods for sequence based determination of function.
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Figure 1: (cf. [21]) Different computational routes to discover the function of a protein.

Similar outstanding contributions to determination of function have been archived in the area of struc-
ture prediction, molecular modeling and molecular dynamics. Techniques covering ab initio and homology
modeling up to biophysical interpretation of long-run molecular dynamics simulations are mentioned here.

With the ever-increasing number of information of different genetic/genomic origin, new aspect are looked
for that deviate from the single gene at a time method. Especially with the identification of surprisingly
few human genes the emerging perception in the scientific community that the concept of function has to be
extended to include other sequence based as well as non-sequenced based information.

A schema, of determination of function by different concepts is shown in Fig. 1.

The tutorial comprises of following sections; the first two sections will discuss the differences between
genomic and non-genomic based context information, section three will cover combined methods. Finally,
section four lists web-resources and databases. All presented approaches extensively employ comparative
methods.

2 Gene Context

In this section the primary goal will be to discuss different benefits between homology-based and context-
based genomic information. The audience will learn the different grades of genome-based contextual infor-
mation based on genomes such as phyletic profiles, co-occurrence, conserved gene order/conserved operons



and gene fusions. The Rosetta Stone approach, based on gene-fusion events will be discussed. I will present
techniques how to identify the different grades of genome-based context information and how to use context-
information for high-level annotation and analysis. Examples will be used to illustrate the advantages of
different context information. The existence of different approach for determination of function is mainly
induced by historic events.

In the early days of genomics sequencing a gene or protein was the last step in a tedious and time
consuming analysis. Nowadays with fast-track, whole-genome shotgun sequencing the scientific community
faces abundant genomic information. Not only DNA and protein sequence information, but also information
on internal organization of genes and their location on the chromosome. Such additional information on
neighborhood, interaction of functional connectivity is referred to as context information. Based on the
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Figure 2: (cf. [4]) A schematic representation of different grades of context information.

source of context information, a rather useful classification is a distinction between genome-based and non-
genome based context information. Fig. 2 illustrates different flavors of genome-based context information
that relates to non-genomic context information and which will be discussed in the following;:

I Phylogenetic profiles/co-occurrence of genes in genomes
IT Conservation of local gene neighborhood with two subclasses

ITa Conservation of gene-order
ITb Co-occurrence of genes in operons without conservation of gene-order
IIT Fusion events

Genomic context information is strongly linked to non-genomic context information, such as protein-protein
interaction networks, metabolic networks or signaling pathways (bottom of Fig. 2).



2.1 Phylogenetic profiles/Co-occurrence of genes in genomes

Phylogenetic profiles, the pattern of occurrence of orthologs of a particular gene in a set of genomes under
comparison, are the most general form of contextual information [29, 36].
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Figure 3: (cf. [6]) Phylogenetic profiles of four hypothetical genomes, each containing a subset of several
proteins labeled P1,... ,P7. The presence or absence of each protein is indicated by 1 or 0, respectively.

The method of phylogenetic profiles is illustrated in Fig. 3. A phylogenetic profile describes the presence
or absence of a particular protein across as set of completely sequenced genomes. If two protein have the
same phylogenetic profile, i.e., the same pattern of presence or absence, in all analyzed genomes, it is assumed
that the two proteins have a functional link. The example shown in Fig. 3 suggests that P2 and P7 as well
as P3 and P6 are functionally linked because protein in both pairs share the same phylogenetic profiles,
respectively. Notice that two proteins that are functionally linked in this way, in general, do not share
sequence similarity.

2.2 Conserved gene order / Co-occurrence of genes in operons

Identification of conserved neighborhood of genes on a genome provides rather strong evidence of gene
interaction. Gradually differences are observed between following gene neighborhoods:

e Gene-clusters; sets of genes where neighboring genes are found in close distance to each other (typically
300bp or less). Genes in gene-clusters do not exhibit particular order or transcriptional orientation

e Conserved gene order; gene clusters that possess a particular order.

e Operons; gene-clusters that do not necessarily exhibit a conserved order of genes, but genes in operons
are all oriented in the same transcriptional direction.

Fig. 4 sketches a gene-cluster of two genes (the third gene is not clustered in genome 2 and 3) that is conserved
in neighborhood and as an operon. The gene-cluster is not conserved in gene-order assuming all genes are
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Figure 4: (cf. [6]) Inference of functional linkage by correlating gene neighbors. The light colored genes (red
and yellow) are clustered together in all three genomes.

visualized on the plus strand. A more pronounced example in the case of enzymatic genes, functioning in
the Tryptophan biosynthesis pathway, is depicted in Fig. 22. A more detailed analysis of this operon as well
as pathway will be presented in section 4.2.
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Figure 5: (cf. [28]) Illustration of the definitions of PCBBHs and PCHs (see text).

Overbeek et al. [28] introduced a method to identify gene clusters by identifying parallel close hits between
neighboring genes of different genomes.

Parallel close hits (PCH) are formed by genes (X,,Y,) from genome G, and (X;,Y};) from genome Gy iff
X, and Y, are close on G, (closer than 300bp apart), X, and Y} are close on G}, X, and X, are recognizable
similar and Y, and Y} are recognizable similar. “Similar” is defined by Overbeek et al. by a FASTA3 score
lower than 1.0 x 107°. Additional scores are used to value significance of functional coupling provided by
PCH. These scores depend on a number of factors, the most important of which is the phylogenetic distance
between organisms.

Similar to PCHs, Parallel Close Bidirectional Best Hits are defined: given two genes X and X; from two
genomes G, and Gy, X and X, are called a bidirectional best hit (BBH) iff recognizable similarities exists
between these genes (similarity is defined identical as in the case of PCHs), there is no gene Z; in G that is
more similar than X; is to X/, and there is no gene Z! in G, that is more similar than X/ is to X;. Genes
(X.,Y)) from G, and (X},Y)) from G} form a pair of close bidirectional best hits (PCBBH) iff X and Y,



are close, X; and Y} are close, X| and Y, are BBH, and X| and Y,/ are BBH [28]. Fig .5 illustrates both
PCH and PCBBH.

In general, identification and utilization of gene neighborhood is most robust for microbial genomes with
their well conserved gene organization. But it may also work to some extent even for human genes where
operon-like clusters are observed [41].

2.3 Fusion events
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Figure 6: (cf. [20]) Five examples of pairs of E. coli proteins predicted to interact by domain fusion analysis.

Fusion genes, the coding of two distinct function on one gene provide powerful information on interacting
function. The Rosetta Stone approach uses information of fusion events to predict functional linkages between
genes. Individual genes in one organisms that are fused into a single chain in another organisms are very
likely to interact. Fig. 6 shows examples between non-fused E. coli genes and their fusion genes in other
organisms.

Gene fusion events are the most effective form of genome context. The encoded proteins of the fused
genes tend to be related in function [20], especially if they are orthologs of the fused genes [7, 34].

Marcotte et al.[20] provide a hypothesis on the evolution of protein-protein interactions (Fig. 7). Because
affinity between proteins A and B is greatly enhanced when A is fused to B, some interacting pairs of
proteins may have evolved from primordial proteins that included the interacting domains A and B on the
same polypeptide. The shown evolutionary pathway is often referred to as Rosetta-Stone hypothesis for
evolution of protein interactions.

The domain fusion analysis makes two distinct predictions:

(1) Protein pairs are predicted that possess similar biological functions, e.g., proteins that participate in
a common structural complex, metabolic pathway (next chapter) or biological process. Prediction
of function is robust; for E. coli, general functional similarity was observed in over half the testable
predictions [20].

(2) The method predicts potential protein-protein interactions under certain conditions; the method may
not find all protein protein interactions (false negative) due to evolution of protein-protein interaction
by other methods such as gradual accumulation of mutations. Or it will identify false candidates
for interacting pairs (false positives) due to the possible fission (a disappearance of a fusion) after a
previously fused protein.

As more genomes are sequenced, there is a higher chance of finding Rosetta Stone sequences.



Fusion
ONE JORE

Single | Mutations

y

A B
A B’ —Q—Q—Q—FQ—Q—Q— B
Recombination Loop deletion
-
@ B - B > |5
Hetero-dimer Homo-dimer

Figure 7: (cf. [20]) A model for the evolution of protein-protein interaction.

2.4 Summary

An interesting statistical survey on different types of functional interaction and their context has been
performed by Huynen et al.[16]. Functional interactions between proteins of M. genitalium have been divided
along the previously used hierarchical classification (Section 2).

1. direct physical interaction between proteins

2. indirect physical interaction, i.e., the proteins are part of the same protein complex, but there is no
evidence that they interact directly with each other

the proteins function in a single metabolic network
the proteins function in a non-metabolic network, either regulatory or otherwise
the proteins function in the same process

pairs of proteins of which at least one is hypothetical

N ot e w

proteins with known functions between which no functional interactions are known

A graphical representation of the results is shown in Fig. 9. The surface area of the circles is proportional
to the number of genes used in the analysis.

3 Cellular Networks

In contrast to genomic context metabolic and gene-regulatory networks are representatives of non-genomic
context information. Protein-protein interaction networks will be included as an intermediate between
genomic and non-genomic context information. Different types of networks can easily identified by their
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Figure 8: (cf. [16]) Coverage and overlap between various types of genomic context for M. genitalium genes.
Type I refers to co-occurrence of genes in genomes Type II corresponds to the conservation of local gene
neighborhood, which is divided into two subtypes, subtype IIa (conservation of gene-order) and subtype IIb
(co-occurrence in operons without conservation of gene-order). Fusion genes are identified as type III.

building blocks, i.e., reactions, as primitive elements. Fig. 10 shows four reactions referring to four types of
cellular networks:

e Protein-protein interaction networks
e Metabolic networks

e Signal transduction pathways

e Gene regulatory networks

A successful access to network context is by employing protein function networks and their identification.
A powerful approach to identify a subset of protein function networks, i.e., protein-protein interaction is by
domain fusion analysis which is addrest in the following section.

3.1 Protein Function networks

The main motivation to identify functionally linked proteins and to induce protein function networks is to
predict protein function. Marcotte et al.[20] have shown that the general biochemical function of proteins can
be inferred by associating proteins on the basis of properties other than the similarity between their amino-
acid sequences. These properties associate proteins that are functionally related, i.e., that participate in a
common structural complex, metabolic pathway, biological process or closely related physiological function.

By applying methods for the detection of functional linkage to all proteins of an organism, functional
network of functionally linked proteins can be mapped out. Fig. 11a shows a network of protein interactions
and predicted functional links involving silencing information regulator (SIR) proteins of yeast. Methods that
were employed in the construction of this network are experimentally determined interactions, as summarized
in the Database of Interacting Proteins [42], interactions predicted by the Rosetta Stone Method (section 2.3)
and phylogenetic profiles (section 2.1). Fig. 11b depicts a network of functional links involving the yeast
prion protein Sup35 [40].
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Figure 9: (cf. [16]) Types of functional interaction.

3.2 Metabolic networks

The metabolism of living systems and the evolution of metabolism have been investigated for several decades.
The first studies were performed in the late 50s and early 60s by Popper [30, 31] and Lipmann [17]. These
studies were followed by others seeking to understand the origin of life and the evolution of the biosphere:
seminal contributions by Haldane [13], Miller [24], Oparin [26], and Orgel [27] discussing the (prebiotic)
chemical environment suitable for a biotic evolution are noteworthy in this context. Based on these discus-
sions, hypotheses on the origin and evolution of metabolism were formulated [14] and questions regarding
the emergence of the first cyclic metabolic networks were addressed, e.g., of the citric acid cycle [38].
In this section we restrict ourselves in reporting the general properties of metabolic networks.

3.3 Gene-regulatory networks

The new and emerging field of gene-expression profiling and gene-expression analysis provides ample and
exiting opportunities in computational biology. On the other hand, this research area is in its infancy and,
thus, does not provide the researcher with well-established techniques. Although, various techniques are
utilized for the analysis of gene-expression experiments.

Gene-expression analysis can be categorized in two types of analysis of different complexity.

e Identification of co-expressed genes
e Inference of gene-regulation networks

Compared to the fast developing gene-expression research area the identification of co-expressed genes is
a rather old technique. A spectrum of methods, from simple statistical methods such as calculation of co-
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Figure 10: Types of elementary steps in cellular networks.

variance to more complex supervised or unsupervised machine learning technique, e.g., Principle Component
Analysis or Support Vector Machines, have been used to classify co-regulated genes

The second type of analysis, the inference of gene-regulation networks uses various techniques covering
Bayesian networks, time-series analysis or circuit reconstruction. Main problem in network inference lies in
the vast amount of data for statistically significant identification of gene-network connection. The detailed
presentation of different gene-regulatory network inference methods exceeds this tutorial. The interested
reader is referred to other sources (for example, other tutorials at this conference).

In the lack of sufficient gene-expression data and well established methods we define gene-regulatory
network in a broader view based on co-expression. By a combination of techniques to identify functional
interactions (methods based on conserved operons, protein fusions and phylogenetic profiles), interacting
genes are clustered and the conserved upstream regulatory TIS calculated. Basically a local alignment of
clustered upstream sequence motifs have been used and coded in Sequence Logos [32].

3.3.1 Transcription Initiation Sites

A method, not directly related to either gene-content or non-genomic content is the identification of tran-
scription initiation sites (TIS) or cis-regulatory elements. Transcription initiation sites are DNA sequences
where transcription factors, i.e., proteins, bind. In prokaryotic organisms, TIS are found upstream (cis) of
the open reading frame (ORF) or coding sequence (CDS) and the promotor site (Fig 12). In eukaryotes
TIS for particular genes can be located thousands of basepairs from the corresponding ORF, upstream or
downstream. Also TIS were found to be situated in introns of eukaryotic genes.

Different approaches to identify TIS have been pursuit. A method that employs genome context in-
formation has been developed in Church’s group [22]. McGuire and Church utilize genome based context
information, such as conserved operon, protein fusions and phylogenetic profiles. For each of the three
methods, matrices of weighted interaction values were calculated, base on the number of genes in the cor-
responding genome. Greater values indicate predictions of higher confidence. All three interaction matrices
are then summed up, and the genes are clustered by the obtained matrix entries in order to obtain predicted
regulons. Regulon predictions is performed by local alignment of the upstream sequence regions. Church et
al. have developed a program, AlignACE [15] for the prediction of TIS sequences from the set of regulons.

McCue et al. are pursuing a different approach for identifying TIS. They applied TBLASTN with stringent
criteria to identify potential orthologs in genomes of nine gamma proteobacteria. If gene order was conserved,
only the sequence intergenic regions was used in the further identification of TIS sequences. Otherwise, the
upstream region up to 500bp of the orthologous genes have been used. An advanced Gibbs motif sampler
[25] was utilized, that include a motif model of palindromic patters. Also a position specific background
model, estimated with a Bayesian segmentation algorithm [18] was used to decide between potential binding
site or background.
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Figure 11: (Reprinted by permission from Nature (Eisenberg et al., Nature, 405, 823-826)[6] copyright
(2000) Macmillan Magazines Ltd.) Two functional protein networks of yeast. a) A network of protein
interaction involving silencing regulator (SIR) proteins. Filled circles represent proteins of known function;
open circles indicate proteins of unknown function. Solid lines show experimentally determined interactions,
dashed lines show functional links predicted by the Rosetta Stone approach and dotted lines show functional
links predicted by phylogenetic profiles. b) A network of predicted functional linkages involving the yeast
prion protein Sup35. The dashed line shows the inly experimentally determined interaction. Solid lines
indicated computed linkages (see text). Linkages predicted by more than one method are shown by heavy
lines.
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Figure 12: A typical arrangement for a prokaryotic gene. The coding region (ORF) is preceeded by a
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3.3.2 Principle Component Analysis
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Figure 13: (c.f. [39]) Gene-expression data processing by Principal Component Analysis.

We present a short discourse on gene-expression analysis and use Principle Component Analysis as
example [1]. Principle Component Analysis (PCA) [3] is also known as Singular Value Decomposition
(SVD) [12] or Karhonen-Loéve expansion [19]. PCA is a linear transformation of expression profiles from
genes X assays to eigenvectors of genes or gene-vectors X principal components or modes. The gene-vectors
are unique up to degeneracy and orthogonal transformations.

The relative expression levels of N genes (for example, all genes of an organism’s genome) are simul-
taneously measured by a single micro-array. A series of M experiments (assays) under slightly different
experimental conditions or time-points is then performed. Let the N x M matrix A donate the full expres-
sion data. The PCA is then a linear transformation of the expression data A from the N x M space into

11



the reduced L x L space of singular vectors to modes, where L = min(M, N)
A=UxvT. (1)

The matrix X represents a nonnegative diagonal matrix in the reduced space with singular values o;; corre-
sponding to eigen-expression levels. The transformation matrices U and V define the Ngenes x L modes
and the L singular vectors x M assays, respectively. Fig. 13 shows the schematics of the linear algebra of
SVD.

The essential feature of the SVD procedure is to compute the abstract factors so that the factor corre-
sponding to the largest eigenvalue accounts for a maximum of the variation in the data.

4 Combination of Context Information
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Figure 14: Metabolic network distance. A distance between metabolic networks is defined by using both
sequence similarity information from multiple sequence alignment and connectivity information from the
metabolic network.

A higher predictive value assemble combined approaches between different grades of context information.
Of special interest are combinations between genomic and non-genomic context information for high-level
annotation and analysis. Similar to the previous sections, examples are extensively used to illustrate the
benefit for bioinformatics research of such combined techniques.

I will make the transition from networks to include genomic based context by referring to the connection
between protein-protein interaction and metabolic networks.

With the new technique of comparative network genomics, the quantitative combination between genomic
information and network connectivity, relationships between operon conservation and metabolic networks
will be discussed. Also, reference to gene-expression pattern of adjacent genes will be made.
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Superposition of gene-expression information onto metabolic networks represent the combination of two
non-genomic based context information. Main focus for such an approach is the analysis of organismic
response to environmental stress.

4.1 Comparative Network Genomics

The analysis of physicochemical properties of metabolic networks is a well established research area that
derived from the field of Origin of Life. With the advent of post-genomic research and the exponentially
growing number of completely sequenced genomes suggest the use of new multi-level approaches that combine
genome information with non-genomic network connection. We extend conventional sequence comparison
and phylogenetic analysis of individual sequences to metabolic networks. For this purpose we have developed
a method that combines distance information of aligned sequences with network information of metabolic
networks (Fig. 14) [10, 11]. Connectivity information of metabolic networks is coded into an adjacency
matrix and combined with alignments of corresponding enzymes that function in the network. The distance
matrices of individual enzymes are then combined by a direct sum, considering gap-distances for missing
connections in the network and different weights for ortholog and paralog network presentations.
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Figure 15: (c.f. [11]) Two networks and their common network. In this example two enzymes E and Ef are
not present in both networks. From this results differences in graph-topology between networks of organism
A and organism A’, one being a cyclic reaction scheme for A that becomes a linear scheme due to an absent
enzyme Ef in A’, and another being a shortcut reaction via Ef that is not present in A. Gap penalty Agyq,
is assigned to the corresponding distances AE; and AEg.

Consider two networks I'" and I involving n enzymes I;, I}, i = 1...n and by AX; = §(I;

s Lo

,I!) distances

between enzymes I; and I] calculated utilizing an alignment J. A distance A between I' and I" is then
defined through

A:zn:@-AXi, : 2)

B — { 1 for ortholog pair i
i—1

f for paralog pair i

where f > 0. Different graph-topologies of the network are included in the calculation of distance A according
to Fig. 15. If a functional role I} is missing in a pathway I' then the distance AX}, in Eq. (2) is not defined
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properly. In this case, to the otherwise undefined distance A, a gap value Ag4q, is assigned

The above method is employed in the following section for the comparative network analysis of the citric
acid cycle and the tryptophan biosynthesis networks. We also remark that the method to calculate network
distances is easily adaptable to cellular networks other than metabolic networks.

4.2 From protein-protein interactions to metabolic networks
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Figure 16: (cf. [20]) Reconstruction of two metabolic pathways in E. coli with protein-protein interaction
predicted by the Rosetta Stone approach. (i) The pathways studied are known biosynthetic pathways of
chorismate (A) and purine (B). (ii) The connection are predicted by the Rosetta Stone method. Enzymes
in the pathways that are linked by the Rosetta Stone approach are emphasized.

Previous analysis show that enzymes do interact in protein-protein interaction networks. It is well-
known that complex reactions take place in enzyme complexes. Fig. 16 shows two metabolic pathways
relevant for biosynthesis of (A) chorismate and (B) purine. Some of the protein-protein interactions are
between sequential enzymes in the pathway, and others are between enzymes not directly connected by a
reaction, suggesting a multienyzme complex.

4.2.1 Citric Acid Cycle

Another example is the 2-oxoglutarate dehydrogenase complex in the citric acid cycle that converts 2-
oxoglutarate into succinyl-CoA. The complex itself consists of 12 2-oxoglutarate-decarboxylase subunits, 24
transsuccinylase units with a lipoamid group each, and 12 dihydrolipoyl-dehydrogenase units. This leads
us to a well known example of the Citric Acid Cycle (Krebs Cycle or TriCarboxy Acid, TCA-cycle) where

14
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2-oxoglutarate-decarboxylase plays an essential role in the cyclic reaction. The network of the Krebs cycle is
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Figure 18: Metabolic profile of the citric acid cycle. Enzymes are group according to the classification of
reaction in Fig. 17. Circles refer to enzymes that catalyze reactions in the direction opposite to the usual
metabolic flux in the oxidative TCA cycle.

depicted in Fig. 17. A metabolic profile performed for 30 completely sequence genomes is shown in Fig. 18.
One can observe the changing metabolic capacity by changing “life-style” between organisms. Autotroph,
aerobic organisms do have the complete TCA cycle (bottom left to top right hatching). Some organisms miss
the link reaction by 2-oxo-glutarate dehydrogenase (top left to bottom right hatching). The methanogenic
archaea (horizontal bricks) only have the reductive branch, C. acetobutylicum and H. pylori (vertical bricks)
only possess the oxidative branch of the cycle. All other organisms have a rather rudimentary metabolic
profile of the TCA cycle.

Employing comparative network genomics as outlined in the previous section yields following network
similarities visualized as phylogenetic tree (19).

4.2.2 Tryptophan Biosynthesis Network

An interesting relationship between metabolic networks, operon conservation and gene fusion events have
been observed in the case of the Tryptophan biosynthesis network (Fig 20). In the last step of tryptophan
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biosynthesis, serine combines with indoleglycerol phospate to produce tryptophan and glyceraldehyde-3-
phosphate. The two glycolytic enzymes that are present in almost all organisms, glyceraldehyde-3-phosphate
dehydrogenase (gapA) and phosphoglycerate mutase (pgk), recycle the three-carbon glyceraldehyd-3-phosphate
to 3-phosphoglycerate. The latter is then transformed via phosphoglycerate dehydrogenase (serA), phospho-
serine transaminase (serC) and phosphoserine phosphatase (serB) to serine. Tryptophan itself is synthesized
from chorismate via anthranilate synthase component a and § (trpE and trpG), anthranilate phosphoribosyl
transferase (trpD), N-(5’-phosphoribosyl)anthranilate isomerase (trpF), indole-3-glycerol phosphate synthase
(trpC), and tryptophan synthase a and § chain (trpA and trpB). The metabolic profile of the network is
presented in Fig. 21. Here the lack of serC in the archaea is prominent. Although, experimental evidence
exists that archaea use the standard phosphorylating pathway to synthesize serine (Stauffer, 1983; Metcalf
et al., 1996). Apparently archaea possess serC genes that are unrelated to any serC sequence presently in
the sequence databases.

A comparison of the operon organization (Fig 22) with the corresponding network phylogeny (Fig 23) [11]
shows the following: Based on the 16S rRNA tree, E. coli is closely related to Y. pestis, H. influenzae and P.
aeruginosa as shown in Fig. 22. On the other hand, in terms of pathways, P. aeruginosa is closely related to
R. capsulatus as shown in Fig. 23 (clade I) with similar operon organization (trpE-trpD-trpC. . . trpF-trpB)
(Fig 22). Closely related E. coli, H. influenzae and Y. pestis, based on the 16S rRNA tree, exhibit very
similar pathways. H. pylori, distantly related to the former organisms based on the 16S rRNA tree, joins
the group in the pathway phylogeny (Fig. 23, clade III) with a common operon organization showing a
gene-fusion between trpC and trpF (trpE-trpG-trpD-trpC/F-trpB-trpA) (Fig 22).

Another example for a difference between pathway phylogeny and 16S rRNA tree is observed between
archaea and bacteria. M. thermoautotropicum (operon: trpE-trpG-trpC-trpF-trpB-trpA-trpD) (Fig 22) shows
a pathway as well as operon structure that is close to that of T. maritima and C. acetobutylicum (trpE-
trp G-trpD-trpC-trpF-trpB-trpA, (Fig 22)) as shown in Fig. 23 (clade II). Ounly ¢rpD changed place during
evolution between M. thermoautotropicum on the one hand and C. acetobutylicum, T. maritima on the
other hand. At comparison of operon structures of trp-genes for organisms in clade IT and of those in clade
IIT suggests a gene-fusion event between trpC and trpF genes. Non-fused trpC and trpF genes in clade
IT involving C. acetobutylicum, M. thermoautotropicum and T. maritima have been fused during evolution
and are exhibited as fusion genes trpC/F in E. coli, H. influenzae, H. pylori and Y. pestis in clade III. The
gene fusion occurs between the gram-positive bacterium C. acetobutylicum, the thermophile bacterium 7.
maritima, the archaeon M. thermoautotropicum (clade IT) and gram-negative bacteria E. coli, H. influenzae,
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H. pylori, Y. pestis (clade III). Despite this gene-fusion, the overall operon organization for organisms in
clades II and III is identical.

4.3 Gene-expression of metabolic networks

We have analyzed the diauxic shift data from DeRisi et al. [5] by PCA/SVD outlined in section 3.3.2 and
Fig. fig:svd-a [39]. The genes in the resulting co-expressed gene-vectors after analysis have been categorized
in functional classes. Singular-values of mode 2 have been plotted against those of mode 1 and highlighted
according to their functional class (Fig. 24). It turned out that the majority of genes are clustered according
to their functional classes. For example, almost all genes related to carbohydrate metabolisms (including
energy generation) are clustered. Although some exceptional genes could be identified; the S-component
of 6-phosphofructokinase (PFK2) and the a-component of fructose-1,6-bisphosphatase (FBP1), which both
catalyze reactions between fructose-6-phosphate and fructose-1,6-bisphosphate, but in opposite chemical
directions (Fig 25). PFK2 catalyzes the irreversible conversion of fructose-6-phosphate into fructose-1,6-
bisphosphate in the glycolysis network for the consumption of glucose and its degradation into pyruvate,
which then feeds into the citric acid cycle. FBP1 catalyzes the exact opposite, and also irreversible, reaction
changing fructose-1,6-bisphosphate into fructose-6-phosphate. Although not surprising, it is noteworthy that
the cellular network, in changing direction of the glycolytic flux during diauxic shift, of course, has to inhibit
PFK2 and to activate FBP1 in the same time. In identifying such genetic switches in metabolic networks
will further help to understand the modular organization and regulation of cellular networks [9].
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5 Web-based Information and Databases

A permanently incomplete list of web-based tools and databases relevant to network genomics will be pre-
sented.

Enzymes http://www.brenda.uni-koeln.de (BRENDA)
http://igweb.integratedgenomics.com/EMP (EMP)
http://www.expasy.ch (Expasy)

Gene Expression http://genex.ncgr.org (GeneX)
http://www.ncbi.nlm.nih.gov/geo (NCBI)
http://genome-www4.stanford.edu/MicroArray /SMD (Stanford Microarray Database)

etabolic Networks http://ecocyc.PangeaSystems.com (EcoCyc)
http://www.expasy.ch/cgi-bin/search-biochem-index (Expasy: Biochemical Pathways)
http://www.genome.ad.jp/kegg (KEGG)
http://cgsc.biology.yale.edu/metab.html
http://www.gwu.edu/ mpb
http://www.ncgr.org/pathdb (PathDB)
http://wit.mcs.anl.gov/WIT2 (WIT Argonne)
http://wit.integratedgenomics.com/IGwit (WIT/ERGO IntegratedGenomics

craction Networks http://dip.doe-mbi.ucla.edu (Database of Interacting Proteins)
http://www.biochem.ucl.ac.uk/bsm/PP /server (Protein-Protein Interaction Server)

snalling Pathways http://www.genome.ad.jp/kegg (KEGG)
http://www.grt.kyushu-u.ac.jp/spad (SPAD)
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Misc http://www.labmed.umn.edu/umbbd (Biodegradation Database)
http://www-lmmb.nciferf.gov/toms/delila.html (Sequence Logos)

Glossary

CDS CoDing Sequence; a DNA sequene that codes for a protein. In eukaryotic organisms it refers to the
spliced mRNA, i.e., it only consists of exons. In the lack of introns, CDS and ORF (see there) are
identical.

Cenancestor (c.f. [8]) The most recent common ancestor of the taxa under consideration.

Character (c.f. [8]) Any genic, structural or behavioral feature of an organism having at least two forms of the
feature called character states, for example: feather color, red (cardinals) or blue (blue jays); nucleotide,
A T, Gor C.

Gene cluster A set of genes withough particular order or direction where each gene is in close distance (typically
closer than 300 bp) to neighboring genes (see operon).

Homology (c.f. [8]) The relationship of any two characters that have descended, usually with divergence, from a
common ancestral character.

ORF Open Reading Frame; a region on the genome which codes for a protein. In eukaryotic organisms an
ORF includes exons and introns (see CDS).

Operon A gene cluster (see there) that is co-expressed by the cellular transcription machinery. Prerequisites
for co-expressions and, thus, for an operon are (i) uniform orientation of all genes in operon, (ii) close
distance between neighboring genes, and (iii) absence of termination sites.

Orthology (c.f. [8]) The relationship of any two homologous characters whose common ancestor lies in the ce-
nancestor of the taxa from which the two sequences were obtained.

Paralogy (c.f. [8]) The relationship of any two homologous characters arising from a duplication of the gene for
that character.
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